Skeleton Code Breakdown

Important: Throughout this document and the Python code, methods are referred to as private, protected and
public. In this document, method names are written without leading underscores, whereas in the Python code,
method names are written with leading underscores; a private method appears with a double underscore at the
start and a protected method with a single underscore.

Class: Dastan

Identifier / Data I Description \
<<constructor>>
Parameters R :Int Initialises the following protected attributes:

C:lInt

NoOfPieces : Int

o NoOfRows from parameter R

Return values

n/a

e NoOfColumns from parameter C
¢ MoveOptionOfferPosition to 0

Instantiates two new Player objects — Player 1 with the Direction
parameter of 1 and Player 2 with the Direction parameter of -1 —
and appends them both to the protected list attribute Players.

Assigns the element at position 0 of the Players list
(Player 1) to the protected attribute CurrentPlayer.

Invokes the following methods:

e CreateMoveOptions() —to add the five standard move options
to each player.

e CreateMoveOptionOffer() — to add the five standard move
options to the move offer option list.

e CreateBoard() —to create a standard size board.
CreatePieces() — to add the standard player and Mirza pieces
to the board using the parameter NoOfPieces.

CalculatePieceCapturePoints (private)

Parameters

FinishSquare
Reference : Int

Uses the GetPiecelnSquare method to get the piece at the Board
location from the FinishSquareReference parameter.

Return values

Integer

If there is a piece at that location, the PointsIfCaptured attribute for

that piece is returned. If there is no piece at that location the method
returns O.

ChecklfGameQver (private)

Parameters

n/a

Iterates through the Board list checking each square for a piece.

Return values

Boolean

If the square contains a piece, the method returns true if the square

contains a Kotla, and the piece in the square is a Mirza and belongs
to the opponent of the player that owns that square. Under this
scenario, the player who owns the Mirza has just captured their
opponent’s Kotla. If this isn’t the case, the method checks to
confirm if the piece contains either a Player 1 or Player 2 Mirza
setting the PlayerlHasMirza and Player2HasMirza attributes
appropriately.

A negated logical AND of these two attributes is returned. If both
players have lost their Mirza, the method returns true, otherwise it
returns false.

AQA 2023: Dastan (Python)

Page 1 of 14 © ZigZag Education, 2022

CheckSquarelnBounds (private)

Parameters

SquareReference : Int

Return values

Boolean

Used as an error handling method to check if the
SquareReference parameter is within the bounds of the
playing board.

The method initialises two local variables, Row and Col,
using DIV to split off the row and MOD to split off the column
from the SquareReference parameter. The method then
checks to confirm if Row is outside of the range of 1 to the
attribute NoOfRows and Col is outside of the range of 1 to
the attribute NoOfColumns and returns false.

If both are in range, the method returns true.

CheckSquarelsValid (private)

Parameters

SquareReference : Int
StartSquare : Boolean

Return values

Boolean

Used to test if the SquareReference parameter is a valid
Square choice.

The StartSquare parameter is passed as true if this method
is being used to check when the player is selecting the
location of a piece to move from (a ‘move from’ check),
otherwise it is passed as false when the method is being used
to check when the player is selecting the location to move a
piece to (a ‘move to’ check).

The method firstly uses the CheckSquarelnBounds()
method to confirm that the square reference is within the
bounds of the board and returns false if it is not.

The method then gets the piece at the Board location from
the SquareReference parameter. If there is no piece at that
location and this is a ‘move from’ check, the method returns
false because the player has selected a blank square. If the
StartSquare parameter is true — this is a ‘move to’ check, the
method instead returns true because the player has selected
a blank square.

If there is a piece already at the location chosen by the player,
the method checks to confirm if that piece belongs to the
current player. If it does and this is a ‘move from’ check, the
method returns true. If this is a ‘move to’ check, the method
returns false because the player is trying to move a piece
onto one of their own pieces.

If the piece does not belong to the current player and this is a
‘move from’ check, the method returns false because the
player is trying to select an opponent piece to move. If this is
a ‘move to’ check, the method returns true as the player is
attempting to take an opponent piece.

CreateBoard (private)

Parameters

n/a

Return values

n/a

Uses nested iteration using the NoOfRows and
NoOfColumns attributes to populate the Board list.

Player 1’s Kotla is placed to the left of the middle of row 1 and
Player 2’s Kotla is placed in the middle (or right of middle if
there is an even number of columns) of the value stored in the
NoOfRows attribute.

The remaining locations are filled with an empty Square
object.

AQA 2023: Dastan (Python)

Page 2 of 14 © ZigZag Education, 2022

CreateChowkidarMoveOption (private)

Parameters

Direction : Int

Return values

NewMoveOption :
MoveOption

Instantiates a new MoveOption for the chowkidar move. This
method uses the Direction parameter to instantiate new
Move objects — one for each valid move location for this move
option.

The first new Move parameter is the number of rows to move
from starting location to finishing location. The second new
Move parameter is the number of columns to move from the
starting location to finishing location. Both values are relative
to the starting location.

A Direction of 1 moves down the board - for Player 1, and a
Direction of -1 moves up the board — for Player 2. Each new
Move object is added to the chowkidar NewMoveOption
object which is then returned.

See pre-release document for a graphical representation of
valid move positions (shown from the viewpoint of Player 2).

CreateCuirassierMoveOption (private)

Parameters

Direction : Int

Return values

NewMoveOption :
MoveOption

Instantiates a new MoveOption for the cuirassier move. This
method uses the Direction parameter to instantiate new
Move objects — one for each valid move location for this move
option.

The first new Move parameter is the number of rows to move
from starting location to finishing location. The second new
Move parameter is the number of columns to move from the
starting location to finishing location. Both values are relative
to the starting location.

A Direction of 1 moves down the board — for Player 1, and a
Direction of -1 moves up the board — for Player 2. Each new
Move object is added to the cuirassier NewMoveOption
object which is then returned.

See pre-release document for a graphical representation of
valid move positions (shown from the viewpoint of Player 2).

CreateFaujdarMoveOption (private)

Parameters

Direction : Int

Return values

NewMoveOption :
MoveOption

Instantiates a new MoveOption for the faujdar move. This
method uses the Direction parameter to instantiate new
Move objects — one for each valid move location for this move
option.

The first new Move parameter is the number of rows to move
from starting location to finishing location. The second new
Move parameter is the number of columns to move from the
starting location to finishing location. Both values are relative
to the starting location.

A Direction of 1 moves down the board — for Player 1, and a
Direction of -1 moves up the board — for Player 2. Each new
Move object is added to the faujdar NewMoveOption object
which is then returned.

See pre-release document for a graphical representation of
valid move positions (shown from the viewpoint of Player 2).

AQA 2023: Dastan (Python)

Page 3 of 14 © ZigZag Education, 2022

CreateJazairMoveOption (private)

Parameters

Direction : Int

Return values

NewMoveOption :

MoveOption

Instantiates a new MoveOption for the jazair move. This
method uses the Direction parameter to instantiate new
Move objects — one for each valid move location for this move
option.

The first new Move parameter is the number of rows to move
from starting location to finishing location. The second new
Move parameter is the number of columns to move from the
starting location to finishing location. Both values are relative
to the starting location.

A Direction of 1 moves down the board - for Player 1, and a
Direction of -1 moves up the board — for Player 2. Each new
Move object is added to the jazier NewMoveOption object
which is then returned.

See pre-release document for a graphical representation of
valid move positions (shown from the viewpoint of Player 2).

CreateRyottMoveOption (private)

Parameters

Direction : Int

Return values

NewMoveOption :

MoveOption

Instantiates a new MoveOption for the ryott move. This
method uses the Direction parameter to instantiate new
Move objects — one for each valid move location for this move
option.

The first new Move parameter is the number of rows to move
from starting location to finishing location. The second new
Move parameter is the number of columns to move from the
starting location to finishing location. Both values are relative
to the starting location.

A Direction of 1 moves down the board — for Player 1, and a
Direction of -1 moves up the board — for Player 2. Each new
Move object is added to the ryott NewMoveOption object
which is then returned.

See pre-release document for a graphical representation of
valid move positions (shown from the viewpoint of Player 2).

CreateMoveOption (private)

Parameters

Name : String
Direction : Int

Return values

MoveOption

Uses selection on the Name parameter to select the
associated Create*****MoveOption method and return the
MoveOption from that method.

CreateMoveOptionOffer (private)

Parameters

n/a

Return values

n/a

Adds the five default MoveOptions to the MoveOptionOffer
string list attribute.

AQA 2023: Dastan (Python)

Page 4 of 14 © ZigZag Education, 2022

CreateMoveOptions (private)

Parameters n/a Adds the five default MoveOptions to the
MoveOptionQueue for each player.

Return values |n/a

This method calls the CreateMoveOption() method passing
the move Name and Direction parameters for each of the
five default move options, adding the return MoveOption to
the MoveOptionQueue for Player 1 and Player 2 in the
Players list.

CreatePieces (private)

Parameters NoOfPieces : Int Places the default playing pieces and Mirza for each player
onto the board.

Return values |n/a

The method uses the NoOfPieces parameter to place that
many standard playing pieces onto the board — placing
Player 1 pieces on row 2 and Player 2 pieces on the
penultimate row. Pieces are given the parameters of a name,
which player they belong to, their points value if captured and
their symbol on the board. Player 1 pieces are given the
symbol ‘', Player 2 pieces are given a single quote symbol
using an escape character to correctly interpret it as a string.

The method also places the Player 1 and 2 Mirzas into their
associated Kotlas by halving the NoOfColumns attribute to
work out the middle position in a row. Both Mirzas are given a
points value if captured of 5. Player 1 Mirza is given the
symbol of ‘1’ and Player 2 Mirza is given the symbol of ‘2’.

DisplayBoard (private)

Parameters n/a Iterates through the Board list to print it out onto the screen.
The method works by using the following steps:

Return values |n/a

o [terate through to the number of columns printing the
column number and a space.

e Iterate through to the number of columns printing a short
sequence of hyphens.

e Use nested iteration to print out the associated symbol
for each square on the board preceded by a ‘| If there is
a piece in the square the symbol for that piece is also
printed, otherwise a blank space is printed.

e Print afinal ‘|’ symbol at the end of each row.

¢ Iterate through to the number of columns printing a short
sequence of hyphens followed by two blank lines.

DisplayFinalResult (private)

Parameters n/a The winner of the game is the player with the highest score
when this method is called. The method compares the score
of both players using the GetScore() method.

Return values |n/a

If Player 1 has a higher score than Player 2 then the method
uses the GetName() method to print the Player 1 name
concatenated with ‘is the winner!’; otherwise it prints the
Player 2 name concatenated with ‘is the winner!’ If the player
scores match, ‘Draw!’ is printed to the screen.

AQA 2023: Dastan (Python) Page 5 of 14 © ZigZag Education, 2022

DisplayState (private)

Parameters n/a Used as part of the main menu system in the PlayGame()
method to display information about the CurrentPlayer.

Return values |n/a

The method first calls the DisplayBoard() method to print the
board to the screen followed by the current move option offer
for a player to choose if they want.

It then uses the GetPlayerStateAsString() method to display
the score and move option queue for the current player
followed by the current player name.

GetlndexOfSquare (private)

Parameters SquareReference : Int Used to convert a SquareReference input to a list position in
the Board list for the associated Square.

Return values | Integer

The method initialises two local variables, Row and Col,
using DIV to split off the row and MOD to split off the column
from the SquareReference parameter.

1 is subtracted from both variables to make them zero bound
and then the Row is multiplied by the NoOfColumns attribute
and added to the Col attribute and returned.

GetPointsForOccupancyByPlayer (private)

Parameters CurrentPlayer : Player Used to calculate the total points for any squares occupied by
the CurrentPlayer.

Return values | ScoreAdjustment : Int

The method initialises an integer variable ScoreAdjustment
to 0 then iterates through the Board list looking for squares
which are occupied by the current player.

The GetPointsForOccupancy method is called on each
square in the Board list which by default will return 0. The
method is overridden by the Kotla class to return 5 if the
Kotla belongs to current player and is occupied by the current
player Mirza or a current player piece. It will return 1 if the
Kotla occupied by a current player piece or Mirza belong to
the opponent player.

Points are totaled up in the ScoreAdjustment variable as the
iteration progresses.

This total is then returned.

GetSquareReference (private)

Parameters Description : String Used to get a square reference on the board from the user.

Return values | SelectedSquare : Int The method uses the Description parameter to concatenate
an appropriate output to the user so that this method can be
used for either a start or finish square reference.

Input from the user is casted without any error handling and
stored in a local integer variable SelectedSquare and then
returned.

AQA 2023: Dastan (Python) Page 6 of 14 © ZigZag Education, 2022

PlayGame (public)

Parameters n/a

Return values |n/a

This method is the main game playing loop which is held in
the loop using the local Boolean variable GameOver.

The method firstly displays the current game state which
includes the board and the current player queue. It then asks
the current player to choose a move option (1-3) from their
move option queue or select 9 if they would like to choose a
move offer.

If the user selects option 9, the method calls
UseMoveOptionOffer() to display the move offer submenu
and then displays the current game state again. The method
loops until the user selects a valid move option.

The method then asks the user to enter in a
StartSquareReference containing the piece that they would
like to move. Using the GetSquareReference() and
CheckSquarelsValid() methods, it will repeatedly ask until
the user gives a valid location.

The method then repeats this process but asking for a
FinishSquareReference containing the location of where the
player wants to move the piece to. The method then uses the
CheckPlayerMove() method to confirm that the
StartStartReference and FinishSquareReference are valid
for the selected move choice.

If the move is legal, the method performs the following steps:

e Calculates any points if the move captures an opponent
piece using the CalculatePieceCapturePoints() method
and storing it in PointsForPieceCapture.

¢ Updates the player score based on the position of the
move option used from the player queue using the
ChangeScore() method.

e Updates the player queue to move the select
MoveOption choice to the back of the queue using the
UpdateQueueAfterMove() method.

e Calls the UpdateBoard() method to update the position
of pieces based on the StartSquareReference and
FinishSquareReference.

e Calls the UpdatePlayerScore() method to update the
current player score with PointsForPieceCapture.

¢ Prints the updated score for the current player onto the
screen.

This method does not deal with the case where the move is
not legal, it simply just ignores the move and completes the
player turn without informing the player.

The method then checks which player is currently playing and
swaps to the opposing player. It then uses the
ChecklfGameOver() to check if the current player has got
their Mirza into the opponent Kotla or the opponent Mirza has
been captured which stops the main game playing loop.

After the main game playing loop the method calls the
DisplayState() method to print the final position of the playing
board and then calls the DisplayFinalResult() method to
confirm which player has won.

AQA 2023: Dastan (Python)

Page 7 of 14 © ZigZag Education, 2022

UseMoveOptionOffer (private)

Parameters

n/a

Return values

n/a

Used to place the move from the MoveOptionOffer list
into the current player move option queue.

The method asks the player for a position to place the
current offer move from the MoveOptionOffer list and,
without using any error handling, stores the result in the
local integer variable ReplaceChoice. The method then
uses the UpdateMoveOptionQueueWithOffer()
method on the CurrentPlayer object to replace the user
selected position move with the current offer move from
the MoveOptionOffer list. The method then reduces
the player score using the ChangeScore() method
based on the position of the move option selected by
the player to replace.

The method then updates MoveOptionOfferPosition
variable with a random number from O to 4 to select a
new move from the MoveOptionOffer list.

UpdateBoard (private)

Parameters

StartSquareReference : Int
FinishSquareReference : Int

Return values

n/a

Performs the actual move of a piece from one location
on the board to another.

The method uses the RemovePiece() method on the
Board list index calculated from the
StartSquareReference parameter. This piece is
subsequently passed as a parameter to the SetPiece()
method to be placed at the Board list index calculated
from the FinishSquareReference parameter.

UpdatePlayerScore (private)

Parameters

PointsForPieceCapture : Int

Return values

n/a

Calculates the change in player score for the move
which the player has just made.

The method calls the
GetPointsForOccupancyByPlayer() method on the
current player to create a total points score for any
Kotlas which are occupied by the player. This is then
added to the PointsForPieceCapture parameter which
contains the points for any opponent pieces captured in
that move.

The combined total is then used to update the current
player score using the ChangeScore() method.

AQA 2023: Dastan (Python)

Page 8 of 14 © ZigZag Education, 2022

Class: Piece

Identifier / Data l Description
<<constructor>>
Parameters T : String Initialises the following protected attributes:
B : Player .
P Int o TypeOfPiece from parameter T
S : String e BelongsTo from parameter B
e PointslfCaptured from parameter P
Return values |n/a .

Symbol from parameter S

GetBelongsTo (public)

Parameters

n/a

Returns the value of the protected attribute BelongsTo.

Return values

BelongsTo : Player

GetPointslIfCapt

ured (public)

Parameters

n/a

Returns the value of the protected attribute PointsIfCaptured.

Return values

PointsIfCaptured : Int

GetSymbol (pub

lic)

Parameters

n/a

Returns the value of the protected attribute Symbol.

Return values

Symbol : String

GetTypeOfPiece (public)

Parameters

n/a

Returns the value of the protected attribute TypeOfPiece.

Return values

TypeOfPiece : String

Class: Square

Identifier / Data l Description |
<<constructor>>

Parameters n/a Initialises the following protected attributes:

Return values |n/a e PiecelnSquare to null

e BelongsTo to null
e Symbolto*"

ContainsKotla (public) <<virtual>>

Parameters

n/a

If the Symbol attribute is a ‘K’ or a ‘k’, this method returns true

Return values

Boolean

to confirm that there is a Kotla piece in this square, otherwise it
returns false.

GetBelongsTo (public) <<virtual>>

Parameters

n/a

Returns the value of the protected attribute BelongsTo.

Return values

BelongsTo : Player

GetPiecelnSqua

re (public) <<virtual>>

Parameters

n/a

Returns the value of the protected attribute PiecelnSquare.

Return values

PiecelnSquare : Piece

AQA 2023: Dastan (Python)

Page 9 of 14 © ZigZag Education, 2022

GetPointsForOccupancy (public) <<virtual>>

Parameters

CurrentPlayer : Player

Base class method for the GetPointsForOccupancy()

Return values

Integer

method in the Kotla class to override.

If the method was not overridden, it would just return O.

GetSymbol (public) <<virtual>>

Parameters

n/a

Returns the value of the protected attribute Symbol.

Return values

Symbol : String

RemovePiece (p

ublic) <<virtual>>

Parameters

n/a

Used for removing a piece from a square.

Return values

PieceToReturn : Piece

The method makes a temporary copy of the Piece in the

attribute PiecelnSquare in a local variable PieceToReturn,
then sets the attribute to null to delete the piece in the square.
It then returns the variable PieceToReturn.

SetPiece (public) <<virtual>>

Parameters

P : Piece

Assigns the P parameter to the protected attribute

Return values

n/a

PiecelnSquare.

Class: Kotla (inherits from Square)

Identifier / Data Description \
<<constructor>>
Parameters P : Player Initialises the following parent attributes:

S : String

e BelongsTo from parameter P

Return values

n/a

e Symbol from parameter S

GetPointsForOc

cupancy (public) <<overrid

e>>

Parameters

CurrentPlayer : Player

Overrides the GetPointsForOccupancy() method from the

Return values

Integer

base class to return the score points when a square is

occupied.

The method checks first to see if there is a piece in the Kotla
square. If there is not, the method returns zero points.

If there is a piece in the Kotla square, the method then checks
to see if the Kotla square belongs to the same player as the
CurrentPlayer passed in as a parameter. If they match and
the piece in the Kotla is either a Mirza or a standard piece
also owned by the CurrentPlayer, the method returns five
points. If Kotla square belongs to the CurrentPlayer, but
there is no Mirza or standard piece in it, the method returns
Zero points.

If the Kotla square belongs to the opponent player and the
piece in it is either a Mirza or a standard piece owned by the
CurrentPlayer, the method returns one point, otherwise it
returns zero points.

AQA 2023: Dastan (Python)

Page 10 of 14 © ZigZag Education, 2022

Class: MoveOption

Identifier / Data l Description \
<<constructor>>

Parameters N : String Initialises the following protected attributes:

Return values |n/a e Name from parameter N

e PossibleMoves to an empty Move list

AddToPossibleMoves (public)

Parameters

M : Move Adds the M parameter to the protected PossibleMoves

Return values

n/a list.

ChecklfTherelsAMoveToSquare (public)

Parameters StartSquareReference : Int Used to check if the start and finish locations supplied
FinishSquareReference : Int | by the player are valid start and finish locations for this
MoveOption.
Return values | Boolean

The method initialises four local variables, StartRow
and StartColumn together with FinishRow and
FinishColumn. The method uses DIV to split off the
StartRow and MOD to split off the StartColumn from
the StartSquareReference parameter. It then uses the
same techniques to split off the FinishRow and
FinishColumn from the FinishSquareReference
parameter.

The method then iterates through each Move in the
PossibleMoves list checking if the StartRow,
StartColumn and FinishRow, FinishColumn
combination represent a valid move for one of the
possible positions a piece could move to.

GetName (public)

Parameters n/a Returns the value of the protected attribute Name.
Return values | Name : String
Class: Move
Identifier / Data l Description \
<<constructor>>
Parameters R :Int Initialises the following protected attributes:
C:Int

Return values

e RowChange from parameter R
n/a e ColumnChange from parameter C

GetColumnChange (public)

Parameters

n/a Returns the value of the protected attribute RowChange.

Return values

RowChange : Int

GetRowChange (public)

Parameters

n/a Returns the value of the protected attribute ColumnChange.

Return values

ColumnChange : Int

AQA 2023: Dastan (Python) Page 11 of 14 © ZigZag Education, 2022

Class: MoveOptionQueue

This class does not have a specific constructor and therefore uses the default constructor

Identifier / Data I Description |
<<constructor>>
Parameters n/a Initialises the Queue private attribute to an empty

MoveOption list.

Return values

n/a

Return values |n/a
Add (public)
Parameters NewMoveOption : MoveOption | Adds the NewMoveOption parameter to the protected

Queue list.

GetMoveOptionl

nPosition (public)

Return values

QueueAsString : String

Parameters Pos : Int Returns the MoveOption at the index Pos in the
Return values | MoveOption Queue list.

GetQueueAsString (public)

Parameters n/a Initialises a local empty string variable

QueueAsString and a local integer variable Count
which it assigns 1.

The method then iterates through the Queue list
concatenating the Count variable together with the
name of each Move in the Queue (using the
GetName() method), incrementing the Count variable
on each loop.

The method then returns the QueueAsString
variable.

MoveltemToBac

k (public)

Parameters

Position : Int

Return values

n/a

Used for moving a MoveOption to the back of the
Queue list.

The method makes a temporary copy of the
MoveOption at the index Position in the Queue list.

The method then uses the static method RemoveAt()
on the Queue list to remove the MoveOption at the
index Position.

It then appends the temporary copy of the
MoveOption back into the Queue list which has the
effect of placing it at the end of the queue.

Replace (public)

Parameters

Position : Int
NewMoveOption : MoveOption

Return values

n/a

Assigns the NewMoveOption parameter into the
Queue list at the index given in the Position
parameter.

AQA 2023: Dastan (Python)

Page 12 of 14

© ZigZag Education, 2022

Class: Player

Identifier / Data l Description \
<<constructor>>
Parameters N : String Initialises the following protected attributes:

D :Int

e Scoreto 100

Return values |n/a e Name from parameter N
e Direction from parameter D
AddToMoveOptionQueue (public)
Parameters NewMoveOption : Adds the NewMoveOption parameter to the private
MoveOption Queue attribute.
Return values |n/a

ChangeScore (p

ublic)

Parameters

Amount : Int

Return values

n/a

Increments the protected attribute Score by the
Amount parameter.

CheckPlayerMove (public)

Parameters

Pos : Int
StartSquareReference : Int
FinishSquareReference : Int

Return values

Boolean

Used to check if a move selected by a player is valid by
using the ChecklfTherelsAMoveToSquare() method.

The method creates a temporary move object for the
move selected from the player queue using the Pos
parameter.

The method then passes the StartSquareReference
and FinishSquareReference parameters to the
ChecklfTherelsAMoveToSquare() method to confirm if
the references represent a valid move within the
selected move option.

GetDirection (public)

Parameters

n/a

Return values

Direction : Int

Returns the value of the protected attribute Direction.

GetName (public)

Parameters

n/a

Return values

Name : String

Returns the value of the protected attribute Name.

GetPlayerStateAsString (public)

Parameters n/a Used to expose the GetQueueAsString() method in
. the MoveOptionQueue class to the Dastan class
Return values | String
through the player.
The method returns a concatenation of the player score
attribute and the player queue represented as a single
string using the GetQueueAsString() method.
GetScore (public)
Parameters n/a Returns the value of the protected attribute Score.
Return values | Score : Int

AQA 2023: Dastan (Python)

Page 13 of 14

© ZigZag Education, 2022

SameAs (public)

Parameters

APlayer : Player

Return values

Boolean

Used to check if the APlayer parameter is the same
as this player object.

The method first checks to confirm if an actual player
object has been passed as a parameter and returns
false if it is null.

If not, the method compares the name of the APlayer
parameter with the name of this player object. If they
match, the method returns true as this represents that
they are the same player, otherwise it returns false.

UpdateMoveOptionQueueWithOffer (public)

Parameters

Position : Int
NewMoveOption : MoveOption

Return values

n/a

Used to expose the Replace() method in the
MoveOptionQueue class to the Dastan class through
the player.

The method calls the Replace() method on the player
queue, passing the Position and NewMoveOption
parameters. This will replace the move option as the
index of Position with the NewMoveOption
parameter.

UpdateQueueAfterMove (public)

Parameters

Position : Int

Return values

n/a

Used to expose the MoveltemToBack() method in the
MoveOptionQueue class to the Dastan class through
the player.

The method calls the MoveltemToBack() method on
the player queue passing the Position parameter
minus one to make it zero bound. This will cause the
move option at that index in the player queue to be
moved to the back of the queue.

AQA 2023: Dastan (Python)

Page 14 of 14 © ZigZag Education, 2022

	Class: Dastan
	Class: Piece
	Class: Square
	Class: Kotla (inherits from Square)
	Class: MoveOption
	Class: Move
	Class: MoveOptionQueue
	Class: Player

